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The superposition method is employed to obtain buckling loads and free
vibration frequencies for a family of elastically supported rectangular plates
subjected to one-directional uniform in-plane loading. Two edges running in the
direction of the in-plane loading are free. Lateral displacement is forbidden along
the other two edges which are given uniform elastic rotational support. Accurate
buckling loads are tabulated for a fairly broad range of plate geometries and edge
support sti!nesses. Computed free vibration eigenvalues are also tabulated for
square plates with typical in-plane loading and a range of sti!nesses in the edge
supports.
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1. INTRODUCTION

A number of publications have appeared in the technical literature in which the free
vibration and buckling of rectangular plates subjected to uniform in-plane loading
have been analyzed. A fairly extensive review of literature related to both of these
phenomena has been provided by Michelussi [1]. While the buckling of such plates
has traditionally been studied under the subject of plate static behaviour, it is
known that plate buckling can also be readily studied in conjunction with plate-free
vibration behaviour. This is possible because it is known that we can treat the
buckling phenomenon as one associated with a limiting case of free vibration. This
limiting case is arrived at when the in-plane compressive loading is increased to
a level where the plate "rst mode free vibration frequency takes on a value of zero.
The in-plane loading associated with this zero frequency is, in fact, the buckling load.

A number of fairly recent publications have appeared in the literature in which
the two phenomenon of buckling and free vibration have been studied by means of
essentially the same analysis [1}3]. These studies have been conducted for plates
with combinations of classical edge conditions. All have been conducted by means
of the method of superposition.

It is well known that classical boundary conditions as formulated mathematically
represent conditions of idealized edge support. In actual fact, there will be some
elasticity in the plate edge restraints. This elasticity may enter the boundaries
unintentionally or, it may be there as a result of rational design.
0022-460X/00/040755#19 $35.00/0 ( 2000 Academic Press
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In this paper, we consider the free vibration and buckling of thin rectangular
plates with two opposite free edges and uniform in-plane loading running parallel
to these free edges. Along the opposite edges where in-plane loading is applied,
plate lateral displacement is forbidden. Plate rotation along these edges, however, is
not forbidden but, due to rotational elastic restraint, is opposed by bending
moments proportional to the degree of edge rotation. It will already be apparent
that two natural limits for this uniform elastic support exit. When the elastic
e$cient associated with this edge support approaches in"nity, we approach the
classical &&clamped edge'' condition. When this same coe$cient approaches zero we
approach &&simple support'' conditions.

The analysis of this family of plate problems is conducted by means of the
method of superposition. Free vibration and buckling results are computed for
the case where elastic restraint acts along one of the in-plane loaded edges, only, the
other being given essentially simple support. Similar studies are also conducted for
the case where elastic restraint acts simultaneously along each of these opposite
edges. It will be seen that the superposition method provides a highly accurate and
straightforward solution to each family of problems.

2. MATHEMATICAL PROCEDURE

We begin by analyzing the rectangular plate with elastic rotational restraint
along one edge, only. It is found advantageous to conduct this analysis in two
separate steps. First, we develop the analysis for the situation where the edge, to be
ultimately given rotational elastic support, has clamped edge conditions imposed.
It will then be shown that with minor modi"cations to the eigenvalue matrix
developed for this initial problem, we arrive at the appropriate eigenvalue matrix to
be utilized for analysis of the plate with elastic restraint along its boundary.

2.1. DEVELOPMENT OF BUILDING BLOCK SOLUTIONS

Analysis for free vibration and buckling of the above plate with clamped edge
conditions imposed is achieved by superposition of the three forced vibration
problems (building blocks) represented in Figure 1. All building blocks are sub-
jected to one-directional uniform in-plane compressive loading as indicated in the
"gure.

The "rst building block is given simple support along the two in-plane loaded
edges. The edge, g"0, is given slip shear support, indicated by two small adjacent
circles. Vertical edge reaction along this edge, as well as slope taken normal to the
edge, is everywhere zero. The edge, g"1, is free of vertical edge reaction but is
driven by an enforced distributed harmonic edge rotation of circular frequency u.
We begin by obtaining the solution for the response of this building block to the
harmonic excitation.

The principal reference for the work reported here is that of Michelussi [1].
In fact, the "rst step in the present analysis related to imposed clamped edge
conditions as discussed above, follows essentially the analysis discussed by



Figure 1. Schematic representation of building blocks employed in analyzing rectangular plate
with one elastically supported edge.
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Michelussi. For this reason only a brief description of the "rst step in the analysis
will be given for the sake of completeness.

The governing di!erential equation in dimensionless form becomes [1],

L4= (m, g)
Lg4

#2/2
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L4= (m, g)

Lm4
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where the dimensionless in-plane load parameters Pm"P
x
b/D. While Pm represents

a positive compressive load, negative values for Pm represent tensile loads.
Expressions for dimensionless bending moments and vertical edge reactions for

the present problem di!er from those related to problems without in-plane loading
only in that dimensionless vertical edge reactions along the edges, m"0 and 1, are
expressed as
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Focussing on the "rst building block, the amplitude of the enforced edge rotation
is expressed as
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where primes indicate di!erentiation with respect to g.
The solution for plate lateral displacement associated with response of the

building block is expressed as
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Substituting equation (4) into equation (1), an ordinary homogeneous di!erential
equation involving the function >

m
(g) is obtained as
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m
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(g)"0, (5)

where
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The four roots of the characteristic equation related to equation (5) are given as
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We note that d
m

will always be greater than zero. It follows therefore that three
distinct solutions of equation (5) are possible. We will treat these three distinct cases
as follows. Case 1: d2
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The solutions associated with these cases are
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The quantities A
m
, B

m
, etc., above are to be evaluated according to the prescribed

boundary conditions.
Returning to the "rst building block it will be obvious that all antisymmetric

terms in the solutions must be deleted.
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The remaining two unknowns are evaluated by means of the two boundary
conditions which must be enforced along the driven edge. They are expressed as
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Enforcing these two boundary conditions we obtain the following.
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We thus have available the response of the "rst building block for all possible
geometries, driving frequencies, and in-plane loading.

Attention is next focussed on the second building block. It di!ers from the "rst,
only in that edge conditions along the boundaries, g"0 and 1, are interchanged.



760 D. J. GORMAN
A solution is extracted from that of the "rst building block through replacing g,
with the quantity (1!g). Also, in view of sign conventions, a negative sign must
preceede the solution for the second building block obtained in this manner.

Finally, we turn to the third building block of Figure 1. Simple support is
imposed along the edge, m"0, while the other two non-driven edges are given
slip-shear support. Lateral displacement is forbidden at the remaining edge which is
driven by a distributed harmonic bending moment. In view of the in-plane forces
the solution for this building block cannot be obtained, through a transformation
of axis, from any solution of the type already discussed. Rather we must start from
"rst principles.

The amplitude of the driving moment is expressed as
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Solution for plate lateral displacement is expressed as
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Substituting equation (22) into equation (1) it is found that the ordinary di!erential
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The roots of the characteristic equation associated with equation (23) are
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It is found that both d
n
and D

n
may now each take on positive or negative values.

Four distinct forms of solution are thus possible and we again designate these four
distinct cases as follows:
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It will be obvious that only the antisymmetric terms can be retained in the above
solutions. The remaining constants are evaluated by means of boundary conditions
imposed at the driven edge and formulated as
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Enforcing these conditions we obtain the solutions as follows.
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Case 2:
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2.2 DEVELOPMENT OF THE EIGENVALUE MATRIX

Generation of the eigenvalue matrix follows established procedures. The net
contributions of all three building blocks to bending moments along the edges,
g"1 and 0, are expanded in sine series of K terms, and the net coe$cients in each
of these series are set equal to zero. This gives rise to a set of 2K homogeneous
algebraic equations relating the 3K unknown driving coe$cients. A further set of
homogeneous algebraic equations is obtained through expanding the net contribu-
tions of the three building blocks toward the slope along the edge, m"1, in a cosine
series. The eigenvalue matrix is composed of the coe$cient matrix for these sets of
homogeneous equations. A schematic representation of the eigenvalue matrix is
provided in Figure 2.

2.3. MODIFICATION OF EIGENVALUE MATRIX TO INCLUDE ELASTIC EDGE EFFECTS

Let us consider now the boundary condition to be satis"ed along the edge, m"1,
when this edge is given uniform rotational elastic support. In dimensional form the
boundary condition is expressed as

M"k
Lw
Lx

, (43)

where k is the basic rotational elastic sti!ness.



Figure 2. Schematic representation of eigenvalue matrix utilized in analyzing behaviour of
rectangular plate with one elastically supported edge.
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The above equation may be written in dimensionless homogeneous form as

Ma
D

!K
R

L=
Lm

"0, (44)

where K
R
"ka/D is the dimensionless rotational elastic sti!ness.

Returning now to the matrix of Figure 2 it is seen that the e!ects of this
rotational elastic edge support may be incorporated into the matrix by performing
the following two simple operations.

(1) Multiply each element in the lower three segments of the matrix by the
quantity K

R
.

(2) Subtract the quantity, 1)0, from each element along the diagonal of the lower
right-hand segment of the matrix.

Before discussing the computation and presentation of results, it is appropriate
to brie#y describe the modi"cations to the matrix of Figure 2 which will be
necessary when we wish to examine the current plate problem with rotational
elastic support also provided along the edge, m"0.

It will be obvious that we must now add a fourth building block to those of
Figure 1, i.e., a building block which di!ers from the third, only in that it is driven
by a distributed harmonic bending moment along the edge, m"0. The solution for
the response of this building block will, of course, be easily extracted from that of
the third building block. There will now be 4K unknown driving coe$cients;
however, we will have four sets of homogeneous equations available, based on the
prescribed boundary conditions. The eigenvalue matrix of Figure 2 will now be
composed of 16 segments, four across and four down. Post-modi"cations required
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to incorporate the e!ects of rotational elasticity into the matrix will be almost
identical to those described above.

All elements in the third row of segments will again be multiplied by the
dimensionless sti!ness parameter K

R2
, while all elements in the "nal row of

segments will be multiplied by the factor, K
R4

. Subscripts 2 and 4, refer to the edges,
m"1 and 0, respectively. Again, the quantity 1)0 will be subtracted from diagonal
elements of the third segment of the third row; however it will be added to the
diagonal elements of the lower right-hand segment of the matrix. Addition is
required here, rather than subtraction, because equation (44) when applied to the
edge, m"0, will have a positive sign preceding the last term.

There is one further aspect to the generation of the eigenvalue matrix which
should be elaborated upon here, particularly in that it is not considered by
Michelussi [1]. Returning to equation (23) it is seen that with the quantity, nn and
j2 equal to zero (during buckling studies) the quantity c

n
of equation (28) will also

be equal to zero. This would result in the quantity h
45n

of equation (42) taking on
a value of in"nity.

This di$culty can be obviated by recognizing that with the quantity D
n
equal to

zero the "nal term of equation (23) vanishes. The equation can therefore be written
as
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n

(m)#a2>A
n
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The solution to equation (45) is written as

>
n
(m)"A sinam#B cos am#Cm#D. (46)

Enforcing the boundary conditions at m"0 and 1, the solution becomes

>
n
(m)"

E
n

a2 sina
Msin am!m sin aN. (47)

Utilizing the above equation one can now enter the contributions associated
with equation (40) into the eigenvalue matrix when &&n'' equals zero.

3. COMPUTATION AND PRESENTATION OF RESULTS

We are now in a position to compute buckling loads and free vibration frequencies
and mode shapes for the elastically supported plates, with uniform in-plane load-
ing, under consideration. As will be seen shortly, it is found advantageous to begin
by computing buckling loads.

Buckling loads are computed by proceeding as follows. The eigenvalue, j2, is set
equal to zero and a trial compressive buckling load, Pm , is selected. The determinant
of the associated eigenvalue matrix is computed and stored. The trial buckling load
is then augmented slightly, and the process is repeated until the lowest value of Pm is
established for which the determinant of the matrix vanishes. This value of Pm is the
buckling load for the plate under study.
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Free vibration eigenvalues are computed in a similar fashion except, of course,
now the in-plane loading is "xed and we search for values of the parameter j2
which cause the determinant of the associated matrix to vanish. The in-plane
loading imposed during free vibration studies must, of course, be less than the plate
buckling load. It is customary to impose "xed in-plane loading which is some
fraction (less than 100%) of the actual plate buckling load. For this reason, the
practice of computing buckling loads before computing free vibration eigenvalues
is often followed. In either case, whether conducting buckling or free vibration
studies, once the buckling loads or eigenvalues are established, associated mode
shapes are determined by setting one of the non-zero driving coe$cients equal to
unity and solving the resulting set of non-homogeneous equations for the others. It
will be recalled that for plates, mode shapes associated with buckling may not be
the same as "rst mode free vibration mode shapes. The reader will now appreciate
that the analysis as described here permits studies of plates with elastic support at
one, or both edges of the plate. One may use the more general computer program
for all studies and simply focus on the smaller portion of the eigenvalue matrix
when one edge is free of elastic support.

3.1. RESULTS OF BUCKLING STUDIES

All buckling loads reported here, as well as free vibration eigenvalues, have been
computed with building block solutions based on 11 term expansions. Convergence
studies indicated that accuracy up to four signi"cant digits in computed results
could be obtained by means of seven term solutions. Nevertheless, 11 terms were
utilized here and all results are tabulated with four-digit accuracy.

It will be recalled that natural limits for both buckling loads and free vibration
eigenvalues exist, when the rotational elastic coe$cients and allowed to take on
limits of zero and in"nity. The matrix as described above can be utilized to handle
the extreme case, when the elastic coe$cient approaches in"nity, i.e., the clamped
edge condition, by simply deleting the matrix post-generation modi"cations as
described. All data obtained for these two extreme cases have been compared with
the classical edge condition results of Michelussi [1]. Excellent agreement has been
found between the two limiting sets of data. This comparison acts as a partial
veri"cation for the present analysis.

In the data to be presented it will be understood that results for only a very
limited set of problems can be tabulated or plotted. This is because of the numerous
parameters involved, in-plane load intensities, sti!ness coe$cients, plate aspect
ratios, etc. The main objectives of the plotted curves will be to provide insight into
how the buckling-vibratory systems can be expected to behave with varying elastic
sti!ness. Tabulated results will provide digital data against which other research
workers can compare their "ndings for the purposes of veri"cation.

A plot of bucklings load versus edge elastic sti!ness coe$cient is presented in
Figure 3 for a square plate with elastic support along one edge only. The buckling
curve begins at the correct lower limit and rises to eventually approach the known
upper limit. It is observed, as might be expected, that the buckling load is much
more sensitive to edge sti!ness coe$cient in the lower range of this parameter, K

R2
.



Figure 3. Buckling load versus rotational elastic edge sti!ness for square plate with elastic support
along one edge, only.
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A similar buckling curve is plotted in Figure 4 for a square plate with equal
elastic sti!nesses applied at opposite edges. The curve begins, of course, at the same
loading value as that of the previous "gure. Again, it rises relatively rapidly at "rst
and "nally approaches the known buckling load for a plate with the opposite edges
clamped.

Buckling loads for plates with elastic support along one edge only, and various
combinations of elastic sti!ness coe$cient and plate aspect ratio, are tabulated in
Tables 1}5. In Tables 6}10, data are presented over a similar range of the above
parameters for plates with equal elastic support along the opposite edges. Selection
of discrete values of dimensionless sti!ness parameter utilized in these tables was
based on the curves of Figures 3 and 4. An attempt has been made to choose
intervals in the sti!ness parameter which give rise to approximately equal intervals
in the associated buckling loads.

A plot of data for the above tables reveals that tabulated values lie along
continuous curves running between the lower and upper limits.

3.2. RESULTS OF FREE VIBRATION EIGENVALUE STUDIES

A plot of "rst mode eigenvalue versus sti!ness coe$cient for a square plate
subjected to an in-plane loading is presented in Figure 5. Here the plate is given



Figure 4. Buckling load versus rotational elastic sti!ness for square plate. Equal elastic support
acts along opposite edges.

TABLE 1

Buckling loads for plate with elastic support along one edge (/"1)0)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 9)276 1)6 11)82 6)0 15)12 24)0 17)94
0)4 10)03 2)0 12)29 10)0 16)39 30)0 18)21
0)8 10)70 3)0 13)27 14)0 17)09 50)0 18)66
1)2 11)29 4)0 14)03 18)0 17)52 R 19)40

TABLE 2

Buckling loads for plate with elastic support along one edge (/"1)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 21)23 1)6 26)95 6)0 34)43 24)0 40)83
0)4 22)93 2)0 28)02 10)0 37)30 30)0 41)43
0)8 24)43 3)0 30)23 14)0 38)89 50)0 42)46
1)2 25)76 4)0 31)95 18)0 39)88 R 44)14
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TABLE 3

Buckling loads for plate with elastic support along one edge (/"2)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 59)93 1)6 75)83 6)0 96)68 24)0 114)6
0)4 64)64 2)0 78)80 10)0 104)7 30)0 116)3
0)8 68)82 3)0 84)96 14)0 109)1 50)0 119)1
1)2 72)52 4)0 89)76 18)0 111)9 R 123)9

TABLE 4

Buckling loads for plate with elastic support along one edge (/"1/1)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 4)046 1)6 5)172 6)0 6)631 24)0 7)865
0)4 4)380 2)0 5)381 10)0 7)186 30)0 7)981
0)8 4)676 3)0 5)813 14)0 7)492 50)0 8)178
1)2 4)938 4)0 6)149 18)0 7)683 R 8)502

TABLE 5

Buckling loads for plate with elastic support along one edge (/"1/2)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 1)429 1)6 1)833 6)0 2)350 24)0 2)782
0)4 1)549 2)0 1)907 10)0 2)545 30)0 2)823
0)8 1)655 3)0 2)061 14)0 2)652 50)0 2)891
1)2 1)749 4)0 2)180 18)0 2)719 R 3)004

TABLE 6

Buckling loads for plate with equal elastic support along opposite edges
(K

R2
"K

R4
, /"1)0)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 9)276 1)6 14)74 6)0 23)44 24)0 32)86
0)4 10)81 2)0 15)85 10)0 27)42 30)0 33)85
0)8 12)23 3)0 18)29 14)0 29)79 50)0 35)57
1)2 13)53 4)0 20)31 18)0 31)34 R 38)45
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elastic support along one edge only, and the "xed in-plane loading, denoted by the
symbol P

REFF
, is set equal to 80% of the buckling load of a similar plate with no

rotational elastic support along either edge. The choice of in-plane loading is
strictly arbitrary. It permits us to plot data for a typical plate loading and set of



TABLE 7

Buckling loads for plate with equal elastic support along opposite edges
(K

R1
"K

R4
, /"1)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 21)23 1)6 33)54 6)0 53)16 24)0 74)49
0)4 24)69 2)0 36)04 10)0 62)16 30)0 76)74
0)8 27)88 3)0 41)54 14)0 67)53 50)0 80)62
1)2 30)82 4)0 46)10 18)0 71)05 R 87)15

TABLE 8

Buckling loads for plate with equal elastic support along opposite edges
(K

R2
"K

R4
, /"2)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 59)93 1)6 94)11 6)0 148)7 24)0 208)3
0)4 69)54 2)0 101)0 10)0 173)8 30)0 214)6
0)8 78)39 3)0 116)4 14)0 188)9 50)0 225)4
1)2 86)56 4)0 129)1 18)0 198)7 R 243)7

TABLE 9

Buckling loads for plate with equal elastic support along opposite edges
(K

R2
"K

R4
, /"1/1)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 4)046 1)6 6)472 6)0 10)32 24)0 14)47
0)4 4)728 2)0 6)966 10)0 12)08 30)0 14)91
0)8 5)357 3)0 8)045 14)0 13)12 50)0 15)66
1)2 5)937 4)0 8)940 18)0 13)81 R 16)93

TABLE 10

Buckling loads for plate with equal elastic support along opposite edges
(K

R2
"K

R4
, /"1/2)5)

K
R2

P* K
R2

P* K
R2

P* K
R2

P*

0)0 1)429 1)6 2)301 6)0 3)675 24)0 5)141
0)4 1)675 2)0 2)478 10)0 4)297 30)0 5)294
0)8 1)901 3)0 2)864 14)0 4)666 50)0 5)558
1)2 2)109 4)0 3)183 18)0 4)906 R 6)005
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Figure 5. First mode free vibration eigenvalue versus rotational elastic edge sti!ness for square
plate with elastic support along one edge, only; Pm"P

REFF
.
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boundary conditions. A comparison plot for the same plate with the same in-plane
loading, but equal rotational elastic support at opposite edges, is presented in
Figure 6.

Again it is seen that sensitivity of the eigenvalue curves to changes in the elastic
sti!ness coe$cient is much higher at the beginning of the range of this latter
parameter.

Tabulated eigenvalues for the "rst four free vibration modes of the above plates
are presented in Tables 10 and 11 respectively. Intervals in the elastic sti!ness
coe$cient are the same as those utilized earlier in tabulation of buckling loads. All
these results were obtained by initially plotting eigenvalue versus sti!ness curves of
the type shown in Figures 3 and 4. In this way it is veri"ed that continuous curves
are obtained in each case, beginning at the correct limit and approaching the
correct limit as elastic sti!ness is increased. This procedure helps to verify that no
eigenvalues are missing.

4. SUMMARY AND CONCLUSIONS

It is found that the superposition method as exploited here is ideally suited for
establishing accurate buckling loads, as well as free vibration frequencies and mode
shapes, for plates with two opposite edges free and uniform compressive or tensile



Figure 6. First mode free vibration eigenvalue versus rotational elastic edge sti!ness for square
plate with equal elastic support along opposite edges; Pm"P

REFF
.

TABLE 11

First four eigenvalues, j2, for square plate with elastic support on one edge only; K
2R

as indicated (Pm"P
REFF

)

Mode

K
R2

1 2 3 4

0)0 4)279 13)38 34)81 35)40
0)4 5)075 13)66 35)25 35)51
0)8 5)692 13)91 35)61 35)66
1)2 6)192 14)13 35)70 36)04
1)6 6)611 14)33 35)79 36)40
2)0 6)969 14)51 35)87 36)73
3)0 7)674 14)90 36)06 37)47
4)0 8)198 15)21 36)22 38)11
6)0 8)931 15)69 36)48 39)15

10)0 9)775 16)29 36)85 40)58
14)0 10)25 16)66 37)10 41)53
18)0 10)55 16)91 37)28 42)19
24)0 10)85 17)16 37)48 42)89
30)0 11)04 17)32 37)61 43)37
50)0 11)37 17)62 37)87 44)25
R 11)94 18)17 38)39 45)95
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TABLE 12

First four eigenvalues, j2, for square plate with elastic support on opposite edges;
(K

R2
"K

R4
); K

2R
as indicated (Pm"P

REFF
)

Mode

K
R2

1 2 3 4

0)0 4)279 13)38 34)81 35)40
0)4 5)787 13)94 35)69 35)62
0)8 6)893 14)44 35)82 36)49
1)2 7)780 14)89 36)01 37)24
1)6 8)522 15)30 36)19 37)94
2)0 9)160 15)67 36)36 38)59
3)0 10)44 16)48 36)75 40)04
4)0 11)42 17)15 37)09 41)30
6)0 12)84 18)19 37)65 43)34

10)0 14)59 19)57 38)49 46)22
14)0 15)64 20)45 39)06 48)17
18)0 16)33 21)05 39)49 49)57
24)0 17)04 21)68 39)95 51)06
30)0 17)51 22)11 40)28 52)11
50)0 18)36 22)90 40)93 54)11
R 19)92 24)41 42)29 58)16
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in-plane loading applied normal to the other two edges. Lateral displacement is
forbidden along the in-plane loaded edges and these edges may be given any desired
level of rotational elastic sti!ness.

Convergence is rapid and results computed to four signi"cant digit accuracy are
easily achieved. The reader will agree, as pointed out earlier, that only a small
portion of possible combinations of in-plane loading and elastic edge support
sti!ness can be investigated here. The results presented permit one to gain some
insight into the variation of buckling loads and free vibration frequencies, with
elastic sti!ness coe$cients. Of equal or perhaps greater value, is the fact that these
plotted and tabulated results provide other researchers with accurate data against
which their "ndings may be compared. It will also be obvious that the analytical
procedure described here can be extended to handle the analysis of plates with
other combinations of plate elastic edge support combined with uni-directional, or
bi-directional, in-plane loading.
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APPENDIX A: NOMENCLATURE

a, b rectangular plate edge lengths
D plate #exural rigidity"Eh3/12 (1!l2 )
E modulus of elasticity of plate material
h plate thickness
k basic rotational elastic sti!ness coe$cient
K

R
dimensionless rotational sti!ness"ka/D

M bending moment.
Mb2

aD
,
Ma

D
dimensionless bending moments associated with g and m directions respectively

P
x

in-plane compressive loading per unit length along the plate edge
Pm dimensionless in-plane edge loading"P

x
b/D

P
REFF

80% of dimensionless in-plane buckling load for square plate with zero elastic
support along the opposite edges

< plate vertical edge reaction
<b3

aD
dimensionless vertical edge reaction associated with g direction

w plate lateral de#ection as a function of x, and y
= plate lateral displacement divided by edge length a, as a function of m and g
x, y rectangular plate co-ordinates
m, g "x/a, and "y/b respectively
/ plate aspect ratio, b/a
l Poisson ratio of plate material
l* "2!l
j2 free vibration eigenvalue"ua2 Jo/D
u circular frequency of plate vibration
o mass of plate per unit area


	1. INTRODUCTION
	2. MATHEMATICAL PROCEDURE
	Figure 1
	Figure 2

	3. COMPUTATION AND PRESENTATION OF RESULTS
	Figure 3
	Figure 4
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8
	TABLE 9
	TABLE 10
	Figure 5

	4. SUMMARY AND CONCLUSIONS
	Figure 6
	TABLE 11
	TABLE 12

	REFERENCES
	APPENDIX A: NOMENCLATURE

